
如何看待 Google 最新开源的 Gemma-3 系列大模型? - 知乎
在知识蒸馏过程中,研究者为每个token采样256个logit,并按照教师模型的概率分布进行加权。 学生模型通过交叉熵损失函数学习教师模型的分布。
Xgboost predict probabilities - Data Science Stack Exchange
When using the python / sklearn API of xgboost are the probabilities obtained via the predict_proba method "real probabilities" or do I have to use logit:rawand manually calculate the sigmoid funct...
logistic回归中的OR值怎么解释? - 知乎
一、OR值定义 logistic回归分析中的OR值代表“比值比”又称 “优势比”。 OR = 1,X与Y之间没有相关性;OR> 1,X可能会促进Y的出现;OR<1,X会阻碍Y的出现。logistic回归分析可以直接输出OR值, …
when can xgboost or catboost be better then Logistic regression?
I need to improve the prediction result of an algorithm that is already programmed based on logistic regression ( for binary classification). I tried to use XGBoost and CatBoost (with default para...
如何理解深度学习源码里经常出现的logits? - 知乎
logit原本是一个函数,它是sigmoid函数(也叫标准logistic函数) p (x) = 1 1 + e x 的反函数: l o g i t (p) = log (p 1 p) 。 logit这个名字的来源即为 log istic un it。 但在深度学习中,logits就是最终的全连接层 …
MinMaxScaler returned values greater than one
Basically I was looking for a normalization function part of sklearn, which is useful later for logistic regression. Since I have negative values, I chose MinMaxScaler with: feature_range=(0, 1) a...
请问在二元logistic回归中 自变量分多组时该如何解释? - 知乎
死亡的概率为P,则未死亡的概率为1-P,令ln (P/1-P)=logit (P),这一过程称为logit对数变换。 1. 二元Logistic回归模型 当有多个因素时,Logistic回归的一般形式为: 整个模型以最大似然法进行参数估 …
How to do stepwise regression using sklearn? [duplicate]
Scikit-learn indeed does not support stepwise regression. That's because what is commonly known as 'stepwise regression' is an algorithm based on p-values of coefficients of linear regression, and scikit …
如何解释逻辑回归(Logistic regression)系数的含义? - 知乎
此外Logit回归时会提供三个R 方值(分别是M cFadden R 方、Cox & Snell R 方和Nagelkerke R 方),此3个R 方均为伪R 方值,其值越大越好,但其无法非常有效的表达模型的拟合程度,意义相对交小, …
Increase number of iterations in a logistic regression
I have achieved 68% accuracy using glm with family = 'binomial' while doing logistic regression in R. I don't have any idea on how to specify the number of iterations through my code. Any suggestio...